Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531.
نویسندگان
چکیده
We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).
منابع مشابه
A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel...
متن کاملCrizotinib Inhibits Hyperpolarization-activated Cyclic Nucleotide-Gated Channel 4 Activity.
BACKGROUND Sinus bradycardia is frequently observed in patients treated with crizotinib, a receptor tyrosine kinase inhibitor used for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). We investigated whether crizotinib could influence heart rate (HR) through direct cardiac effects. METHODS The direct effect of crizotinib on HR was studied using ...
متن کاملLetter regarding article by Michels et al, "Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias".
BACKGROUND The pacemaker current I(f) is present in atrial and ventricular myocytes. However, it remains controversial whether I(f) overexpression in diseased states might play a role for arrhythmogenesis, because first I(f) activation in whole-cell recordings hardly overlapped the diastolic voltage of working myocardium. METHODS AND RESULTS To obtain further insight into I(HCN) and I(f) prop...
متن کاملThe hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart.
Hyperpolarization-activated, cyclic nucleotide-gated cation currents, termed If or Ih, are generated by four members of the hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channel family. These currents have been proposed to contribute to several functions including pacemaker activity in heart and brain, control of resting potential, and neuronal plasticity. Transcripts of the...
متن کاملSingle-Channel Properties Support a Potential Contribution of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and If to Cardiac Arrhythmias
Background—The pacemaker current If is present in atrial and ventricular myocytes. However, it remains controversial whether If overexpression in diseased states might play a role for arrhythmogenesis, because first If activation in whole-cell recordings hardly overlapped the diastolic voltage of working myocardium. Methods and Results—To obtain further insight into IHCN and If properties, we p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 1 شماره
صفحات -
تاریخ انتشار 2008